Orthogonality and the Maximum of Littlewood Cosine Polynomials
نویسنده
چکیده
We prove that if p = 2q+1 is a prime, then the maximum of a Littlewood cosine polynomial Tq(t) = q
منابع مشابه
The Mahler Measure of the Rudin-shapiro Polynomials
Littlewood polynomials are polynomials with each of their coefficients in {−1, 1}. A sequence of Littlewood polynomials that satisfies a remarkable flatness property on the unit circle of the complex plane is given by the Rudin-Shapiro polynomials. It is shown in this paper that the Mahler measure and the maximum modulus of the Rudin-Shapiro polynomials on the unit circle of the complex plane h...
متن کاملOn the Zeros of Cosine Polynomials: Solution to a Problem of Littlewood
Littlewood in his 1968 monograph “Some Problems in Real and Complex Analysis” [12, problem 22] poses the following research problem, which appears to still be open: Problem. “If the nj are integral and all different, what is the lower bound on the number of real zeros of PN j=1 cos(njθ)? Possibly N −1, or not much less.” No progress appears to have been made on this in the last half century. We...
متن کاملHigher rank numerical ranges of rectangular matrix polynomials
In this paper, the notion of rank-k numerical range of rectangular complex matrix polynomials are introduced. Some algebraic and geometrical properties are investigated. Moreover, for ϵ > 0; the notion of Birkhoff-James approximate orthogonality sets for ϵ-higher rank numerical ranges of rectangular matrix polynomials is also introduced and studied. The proposed denitions yield a natural genera...
متن کاملAVERAGE MAHLER’S MEASURE AND Lp NORMS OF LITTLEWOOD POLYNOMIALS
Littlewood polynomials are polynomials with each of their coefficients in the set {−1, 1}. We compute asymptotic formulas for the arithmetic mean values of the Mahler’s measure and the Lp norms of Littlewood polynomials of degree n − 1. We show that the arithmetic means of the Mahler’s measure and the Lp norms of Littlewood polynomials of degree n − 1 are asymptotically e−γ/2 √ n and Γ(1+ p/2)1...
متن کاملHyperbolic Cosine Log-Logistic Distribution and Estimation of Its Parameters by Using Maximum Likelihood Bayesian and Bootstrap Methods
In this paper, a new probability distribution, based on the family of hyperbolic cosine distributions is proposed and its various statistical and reliability characteristics are investigated. The new category of HCF distributions is obtained by combining a baseline F distribution with the hyperbolic cosine function. Based on the base log-logistics distribution, we introduce a new di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009